Решение квадратных уравнений с помощью формулы

Решение квадратных уравнений с помощью формулы корнейКвадратное уравнение - это алгебраическое выражение, которое может быть представлено в виде ax^2 + bx + c = 0, где a, b и c - это коэффициенты. Формула корней квадратн
Виктор
Беляшов

Решение квадратных уравнений с помощью формулы корней


Квадратное уравнение - это алгебраическое выражение, которое может быть представлено в виде ax^2 + bx + c = 0, где a, b и c - это коэффициенты. Формула корней квадратного уравнения позволяет найти все решения этого уравнения.


Формула корней квадратного уравнения выглядит следующим образом: x1 и x2 - это корни уравнения, а D - дискриминант уравнения.


Для того чтобы найти корни квадратного уравнения, нужно выполнить следующие шаги:


1. Вычислить дискриминант D = b^2 - 4ac.

2. Если D > 0, то уравнение имеет два различных корня.

3. Если D = 0, то уравнение имеет один корень.

4. Если D < 0, то уравнение не имеет действительных корней.

5. Если D = 0, то корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

6. Если D > 0, то корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

7. Если D < 0, то уравнение не имеет действительных корней.


Пример: Пусть у нас есть квадратное уравнение x^2 + 2x - 3 = 0.


1. Вычисляем дискриминант D = b^2 - 4ac = 2^2 - 4 * 1 * (-3) = 4 + 12 = 16.

2. Так как D > 0, то уравнение имеет два различных корня.

3. Корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

4. Подставляем значения: x1 = (-2 + sqrt(16)) / 2 = (2 + 4) / 2 = 6 / 2 = 3.

5. Аналогично, находим второй корень: x2 = (-2 - sqrt(16)) / 2 = (-2 - 4) / 2 = -6 / 2 = -3.


Таким образом, решения квадратного уравнения x^2 + 2x - 3 = 0 равны x1 = 3 и x2 = -3.

Алгебра
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=6777ce810c874be11d5a0ba7
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=6777ce850de4c82f0f39de62
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=6777ce880de4c82f0f39f50b
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=6777ce8c0de4c82f0f3a0d7d
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=6777d6df0c874be11d935704
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67799754ad25a18a8887c1d9
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=677b20bbd64e4f073303cccb
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=677b20e3d64e4f073304f1c6
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=677b2164ffb80772a4b9d7ef
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=677bf5141c016421780a6f7a
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=677bf9b58cbf57da54f19174
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=6782e36d4c19881f7fb3d3bc
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=678462f0babebb92e01e88c5
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67854ae41a74ac4dc355e6d9
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67860bb3d5c5293b201db6dd
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67860ca1f77596091709920a
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=6786c8fbca6ff42b645f2047
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=678a726740d3754fb9052538
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=6795504aafc3f92761a80ba8
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67967c5388f57f9b2fd17118
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67a129c2bfca4765a892ea29
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67a203e1666a7dbf754a5e3d
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67a36d448b791a91c5785aa1
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67ae79cd8eb80253ca84a465
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67b0f2777975fefcaaa8d878
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67b70bc48ce8a48a024811b3
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67b70c099a16f5335f8ebbae
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67b70c6d8ce8a48a024c7a46
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67b9869291109f509590ee2c
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=67bd9f3b336bc862c9bf9317
https://xn--e1aajycefifb.xn--p1ai/experts
https://xn--e1aajycefifb.xn--p1ai/ads_board
https://xn--e1aajycefifb.xn--p1ai/blogs