Решение квадратных уравнений с помощью формулы

Решение квадратных уравнений с помощью формулы корнейКвадратное уравнение - это алгебраическое выражение, которое может быть представлено в виде ax^2 + bx + c = 0, где a, b и c - это коэффициенты. Формула корней квадратн
Виктор
Беляшов

Решение квадратных уравнений с помощью формулы корней


Квадратное уравнение - это алгебраическое выражение, которое может быть представлено в виде ax^2 + bx + c = 0, где a, b и c - это коэффициенты. Формула корней квадратного уравнения позволяет найти все решения этого уравнения.


Формула корней квадратного уравнения выглядит следующим образом: x1 и x2 - это корни уравнения, а D - дискриминант уравнения.


Для того чтобы найти корни квадратного уравнения, нужно выполнить следующие шаги:


1. Вычислить дискриминант D = b^2 - 4ac.

2. Если D > 0, то уравнение имеет два различных корня.

3. Если D = 0, то уравнение имеет один корень.

4. Если D < 0, то уравнение не имеет действительных корней.

5. Если D = 0, то корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

6. Если D > 0, то корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

7. Если D < 0, то уравнение не имеет действительных корней.


Пример: Пусть у нас есть квадратное уравнение x^2 + 2x - 3 = 0.


1. Вычисляем дискриминант D = b^2 - 4ac = 2^2 - 4 * 1 * (-3) = 4 + 12 = 16.

2. Так как D > 0, то уравнение имеет два различных корня.

3. Корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

4. Подставляем значения: x1 = (-2 + sqrt(16)) / 2 = (2 + 4) / 2 = 6 / 2 = 3.

5. Аналогично, находим второй корень: x2 = (-2 - sqrt(16)) / 2 = (-2 - 4) / 2 = -6 / 2 = -3.


Таким образом, решения квадратного уравнения x^2 + 2x - 3 = 0 равны x1 = 3 и x2 = -3.

Алгебра
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d403de2c235acd5236f66
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4046e2c235acd5236f69
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d404cb4bbd8574848616a
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4058b4bbd8574848616d
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d405ee2c235acd5236f6c
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4065e2c235acd5236f6f
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d406db4bbd85748486c1d
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4073e2c235acd5236f76
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4079e2c235acd5236f8a
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4083b4bbd857484885db
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4087e2c235acd5236f8d
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d408eb4bbd857484885de
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4095b4bbd8574848860c
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d409ce2c235acd5236fbe
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40a2b4bbd8574848860f
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40aae2c235acd5236fc1
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40afb4bbd85748488612
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40b0e2c235acd5236fc4
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40b6b4bbd85748488615
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40bce2c235acd5236fc7
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40bfb4bbd85748488618
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40c8e2c235acd5236fca
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40cdb4bbd8574848861b
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40d2e2c235acd5236fcd
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40d8b4bbd8574848861e
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40e5e2c235acd5237892
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40eeb4bbd85748488623
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40f3e2c235acd523943c
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d40f9b4bbd85748488626
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4103e2c235acd523943f
https://xn--e1aajycefifb.xn--p1ai/experts
https://xn--e1aajycefifb.xn--p1ai/ads_board
https://xn--e1aajycefifb.xn--p1ai/blogs