Решение квадратных уравнений с помощью формулы

Решение квадратных уравнений с помощью формулы корнейКвадратное уравнение - это алгебраическое выражение, которое может быть представлено в виде ax^2 + bx + c = 0, где a, b и c - это коэффициенты. Формула корней квадратн
Виктор
Беляшов

Решение квадратных уравнений с помощью формулы корней


Квадратное уравнение - это алгебраическое выражение, которое может быть представлено в виде ax^2 + bx + c = 0, где a, b и c - это коэффициенты. Формула корней квадратного уравнения позволяет найти все решения этого уравнения.


Формула корней квадратного уравнения выглядит следующим образом: x1 и x2 - это корни уравнения, а D - дискриминант уравнения.


Для того чтобы найти корни квадратного уравнения, нужно выполнить следующие шаги:


1. Вычислить дискриминант D = b^2 - 4ac.

2. Если D > 0, то уравнение имеет два различных корня.

3. Если D = 0, то уравнение имеет один корень.

4. Если D < 0, то уравнение не имеет действительных корней.

5. Если D = 0, то корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

6. Если D > 0, то корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

7. Если D < 0, то уравнение не имеет действительных корней.


Пример: Пусть у нас есть квадратное уравнение x^2 + 2x - 3 = 0.


1. Вычисляем дискриминант D = b^2 - 4ac = 2^2 - 4 * 1 * (-3) = 4 + 12 = 16.

2. Так как D > 0, то уравнение имеет два различных корня.

3. Корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

4. Подставляем значения: x1 = (-2 + sqrt(16)) / 2 = (2 + 4) / 2 = 6 / 2 = 3.

5. Аналогично, находим второй корень: x2 = (-2 - sqrt(16)) / 2 = (-2 - 4) / 2 = -6 / 2 = -3.


Таким образом, решения квадратного уравнения x^2 + 2x - 3 = 0 равны x1 = 3 и x2 = -3.

Алгебра
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d41cdb4bbd85748488653
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d41d4e2c235acd523b8d9
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d41d9b4bbd85748489fd4
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d41e4e2c235acd523b8dc
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d41eeb4bbd8574848aac2
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d41f2e2c235acd523b8df
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d41fab4bbd8574848aac5
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4203e2c235acd523b8e2
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d420ae2c235acd523b8e5
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4210b4bbd8574848aac8
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d421de2c235acd523b8e8
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4229b4bbd8574848aacb
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4232e2c235acd523b8eb
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d423ab4bbd8574848aace
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4244e2c235acd523b8ee
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d424ab4bbd8574848aada
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4255b4bbd8574848cf3d
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d425db4bbd8574848cf40
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4262b4bbd8574848cf43
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4269e2c235acd523b8f3
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4271b4bbd8574848cf46
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4278e2c235acd523b8f6
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4284e2c235acd523b8f9
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d428ab4bbd8574848cf7b
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4290e2c235acd523b905
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4295b4bbd8574848cf7e
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d42a1e2c235acd523b908
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d42a8b4bbd8574848cf81
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d42b5e2c235acd523b90b
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d42bab4bbd8574848cf84
https://xn--e1aajycefifb.xn--p1ai/experts
https://xn--e1aajycefifb.xn--p1ai/ads_board
https://xn--e1aajycefifb.xn--p1ai/blogs