Решение квадратных уравнений с помощью формулы

Решение квадратных уравнений с помощью формулы корнейКвадратное уравнение - это алгебраическое выражение, которое может быть представлено в виде ax^2 + bx + c = 0, где a, b и c - это коэффициенты. Формула корней квадратн
Виктор
Беляшов

Решение квадратных уравнений с помощью формулы корней


Квадратное уравнение - это алгебраическое выражение, которое может быть представлено в виде ax^2 + bx + c = 0, где a, b и c - это коэффициенты. Формула корней квадратного уравнения позволяет найти все решения этого уравнения.


Формула корней квадратного уравнения выглядит следующим образом: x1 и x2 - это корни уравнения, а D - дискриминант уравнения.


Для того чтобы найти корни квадратного уравнения, нужно выполнить следующие шаги:


1. Вычислить дискриминант D = b^2 - 4ac.

2. Если D > 0, то уравнение имеет два различных корня.

3. Если D = 0, то уравнение имеет один корень.

4. Если D < 0, то уравнение не имеет действительных корней.

5. Если D = 0, то корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

6. Если D > 0, то корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

7. Если D < 0, то уравнение не имеет действительных корней.


Пример: Пусть у нас есть квадратное уравнение x^2 + 2x - 3 = 0.


1. Вычисляем дискриминант D = b^2 - 4ac = 2^2 - 4 * 1 * (-3) = 4 + 12 = 16.

2. Так как D > 0, то уравнение имеет два различных корня.

3. Корни уравнения можно найти по формуле x1 = (-b + sqrt(D)) / 2a и x2 = (-b - sqrt(D)) / 2a.

4. Подставляем значения: x1 = (-2 + sqrt(16)) / 2 = (2 + 4) / 2 = 6 / 2 = 3.

5. Аналогично, находим второй корень: x2 = (-2 - sqrt(16)) / 2 = (-2 - 4) / 2 = -6 / 2 = -3.


Таким образом, решения квадратного уравнения x^2 + 2x - 3 = 0 равны x1 = 3 и x2 = -3.

Математика
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d30d5e2c235acd5216991
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d30dcb4bbd8574845a5b0
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d30e2e2c235acd5216994
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d30e9e2c235acd521699c
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d30f1e2c235acd521699f
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d30f8b4bbd8574845a613
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3102e2c235acd5218e08
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d310cb4bbd8574845a61b
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3110e2c235acd5218e0b
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3118b4bbd8574845a61e
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3125e2c235acd5218e0e
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d312fb4bbd8574845a621
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3133e2c235acd5218e11
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3139b4bbd8574845a624
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3140e2c235acd5218e14
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3145b4bbd8574845a627
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d314fe2c235acd5218e17
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3159b4bbd8574845a632
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3162e2c235acd5218e28
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3169e2c235acd5218e2d
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3172b4bbd8574845a63b
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d317ce2c235acd521b293
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3182b4bbd8574845a642
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3189b4bbd8574845a645
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3195b4bbd8574845a673
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d319ae2c235acd521b2f9
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d31a1b4bbd8574845a6d3
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d31a7b4bbd8574845a6da
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d31ade2c235acd521b300
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d31b3b4bbd8574845a6df
https://xn--e1aajycefifb.xn--p1ai/experts
https://xn--e1aajycefifb.xn--p1ai/ads_board
https://xn--e1aajycefifb.xn--p1ai/blogs