Как найти сумму бесконечной геометрической

Как найти сумму бесконечной геометрической прогрессии?ВведениеГеометрическая прогрессия - это последовательность чисел, в которой каждый следующий член получается умножением предыдущего члена на определенное число. Напри
Виктор
Беляшов

Как найти сумму бесконечной геометрической прогрессии?


Введение


Геометрическая прогрессия - это последовательность чисел, в которой каждый следующий член получается умножением предыдущего члена на определенное число. Например, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 и т.д. - это геометрическая прогрессия с коэффициентом 2.


Найти сумму бесконечной геометрической прогрессии может быть сложной задачей, особенно если коэффициент прогрессии не является целым числом. Однако, есть несколько способов, которые помогут решить эту задачу.


Способ 1: Использование формулы для суммы бесконечной геометрической прогрессии


Формула для суммы бесконечной геометрической прогрессии выглядит следующим образом:


S = a / (1 - r)


где S - сумма прогрессии, a - первый член прогрессии, r - коэффициент прогрессии.


Пример: Найти сумму бесконечной геометрической прогрессии с коэффициентом 2 и первым членом 1.


S = 1 / (1 - 2) = 1 / (-1) = -1


Таким образом, сумма бесконечной геометрической прогрессии с коэффициентом 2 и первым членом 1 равна -1.


Способ 2: Использование интегралов


Если коэффициент прогрессии является дробным числом, то можно использовать интегралы для решения этой задачи.


Пример: Найти сумму бесконечной геометрической прогрессии с коэффициентом 1/2 и первым членом 1.


S = ∫ 1 / (1/2)^x dx


Подставляем значения:


S = ∫ 2^x dx


Вычисляем интеграл:


S = 2^(x+1) / (x+1) + C


Подставляем значения:


S = 2^(1+1) / (1+1) + C = 2 * 2 / 2 + C = 4 + C


Таким образом, сумма бесконечной геометрической прогрессии с коэффициентом 1/2 и первым членом 1 равна 4 + C.


Заключение


Найти сумму бесконечной геометрической прогрессии может быть сложной задачей, особенно если коэффициент прогрессии не является целым числом. Однако, существуют различные способы решения этой задачи, включая использование формулы для суммы бесконечной геометрической прогрессии и интегралов.

Алгебра
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2bcfe2c235acd5209c85
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2bd5b4bbd8574844ec86
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2bdbe2c235acd520b093
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2be4b4bbd8574844ec89
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2be8e2c235acd520b096
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2bf5e2c235acd520b099
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2bfbb4bbd8574844ec8c
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c01e2c235acd520b09c
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c06b4bbd8574844ec8f
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c0be2c235acd520b09f
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c17e2c235acd520b0a2
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c20e2c235acd520b0a5
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c25e2c235acd520b0a8
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c2be2c235acd520b0ab
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c31b4bbd8574844ecc2
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c36b4bbd8574844ecca
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c3de2c235acd520b0b2
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c43b4bbd8574844eccf
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c4bb4bbd8574844ecd2
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c50e2c235acd520d51b
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c5cb4bbd8574844ecd5
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c62e2c235acd520d51e
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c6ab4bbd8574844ecd8
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c6ee2c235acd520d521
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c75e2c235acd520d524
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c7fb4bbd8574844ece2
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c85b4bbd8574844ecf6
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c8ab4bbd8574844ed0c
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c90e2c235acd520d541
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2c96e2c235acd520d544
https://xn--e1aajycefifb.xn--p1ai/experts
https://xn--e1aajycefifb.xn--p1ai/ads_board
https://xn--e1aajycefifb.xn--p1ai/blogs