Как найти сумму бесконечной геометрической

Как найти сумму бесконечной геометрической прогрессии?ВведениеГеометрическая прогрессия - это последовательность чисел, в которой каждый следующий член получается умножением предыдущего члена на определенное число. Напри
Виктор
Беляшов

Как найти сумму бесконечной геометрической прогрессии?


Введение


Геометрическая прогрессия - это последовательность чисел, в которой каждый следующий член получается умножением предыдущего члена на определенное число. Например, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 и т.д. - это геометрическая прогрессия с коэффициентом 2.


Найти сумму бесконечной геометрической прогрессии может быть сложной задачей, особенно если коэффициент прогрессии не является целым числом. Однако, есть несколько способов, которые помогут решить эту задачу.


Способ 1: Использование формулы для суммы бесконечной геометрической прогрессии


Формула для суммы бесконечной геометрической прогрессии выглядит следующим образом:


S = a / (1 - r)


где S - сумма прогрессии, a - первый член прогрессии, r - коэффициент прогрессии.


Пример: Найти сумму бесконечной геометрической прогрессии с коэффициентом 2 и первым членом 1.


S = 1 / (1 - 2) = 1 / (-1) = -1


Таким образом, сумма бесконечной геометрической прогрессии с коэффициентом 2 и первым членом 1 равна -1.


Способ 2: Использование интегралов


Если коэффициент прогрессии является дробным числом, то можно использовать интегралы для решения этой задачи.


Пример: Найти сумму бесконечной геометрической прогрессии с коэффициентом 1/2 и первым членом 1.


S = ∫ 1 / (1/2)^x dx


Подставляем значения:


S = ∫ 2^x dx


Вычисляем интеграл:


S = 2^(x+1) / (x+1) + C


Подставляем значения:


S = 2^(1+1) / (1+1) + C = 2 * 2 / 2 + C = 4 + C


Таким образом, сумма бесконечной геометрической прогрессии с коэффициентом 1/2 и первым членом 1 равна 4 + C.


Заключение


Найти сумму бесконечной геометрической прогрессии может быть сложной задачей, особенно если коэффициент прогрессии не является целым числом. Однако, существуют различные способы решения этой задачи, включая использование формулы для суммы бесконечной геометрической прогрессии и интегралов.

Алгебра
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2fc9b4bbd857484580c8
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2fcee2c235acd52144d7
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2fd3b4bbd857484580d4
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2fdde2c235acd52144df
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2fe1b4bbd857484580fc
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2fe7b4bbd857484580ff
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2febe2c235acd52144e2
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2fecb4bbd85748458102
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2ff4e2c235acd52144e5
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2ff8b4bbd85748458105
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d2fffe2c235acd52144ee
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3006b4bbd85748458110
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3008e2c235acd5215951
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3010e2c235acd521695d
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3018b4bbd85748458113
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d301de2c235acd5216960
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3026b4bbd85748458117
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d302cb4bbd8574845811b
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3034e2c235acd5216966
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d303ab4bbd8574845811f
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d303fb4bbd85748458122
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3045e2c235acd5216969
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d304bb4bbd85748458125
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3053e2c235acd521696c
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3059e2c235acd521696f
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3064e2c235acd5216972
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d306ab4bbd85748458129
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3076e2c235acd5216975
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d307cb4bbd85748458573
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d3081e2c235acd5216979
https://xn--e1aajycefifb.xn--p1ai/experts
https://xn--e1aajycefifb.xn--p1ai/ads_board
https://xn--e1aajycefifb.xn--p1ai/blogs