Решение квадратных уравнений методом

Решение квадратных уравнений методом ВиетаКвадратное уравнение — это алгебраическое выражение, которое может быть представлено в виде ax^2 + bx + c = 0, где a, b и c — это коэффициенты. Метод Виета — это один из способов
Виктор
Беляшов

Решение квадратных уравнений методом Виета


Квадратное уравнение — это алгебраическое выражение, которое может быть представлено в виде ax^2 + bx + c = 0, где a, b и c — это коэффициенты. Метод Виета — это один из способов решения квадратных уравнений, который был предложен французским математиком Франсуа Виетом в 16 веке.


Суть метода заключается в использовании следующих формул:


1. Сумма корней (x1 + x2) = -b / a

2. Произведение корней (x1 * x2) = c / a


Для решения квадратного уравнения методом Виета необходимо выполнить следующие шаги:


1. Подставить значения коэффициентов a, b и c в формулы для суммы и произведения корней.

2. Вычислить сумму и произведение корней.

3. Найти корни уравнения, подставив полученные значения в исходное уравнение.


Пример решения квадратного уравнения методом Виета:


Уравнение: x^2 + 4x + 5 = 0


Шаг 1: Подставляем значения коэффициентов в формулы для суммы и произведения корней:


- сумма корней = -4 / 1 = -4

- произведение корней = 5 / 1 = 5


Шаг 2: Вычисляем корни уравнения, подставив полученные значения в исходное уравнение:


x1 + x2 = -4

x1 * x2 = 5


Шаг 3: Решаем систему уравнений:


x1 + x2 = -4

x1 * x2 = 5


Решение:


x1 + x2 = -4

x1 * x2 = 5


x1 + x2 - x1 * x2 = -4 - 5


(x1 + x2) * (x1 - x2) = -9


x1^2 - x2^2 = -9


x1^2 - (-9) = x2^2


x1^2 + 9 = x2^2


x1^2 - x2^2 = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


(x1 + x2) * (x1 - x2) = 9


Алгебра
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d49d3b4bbd857484a187e
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d49d8e2c235acd524bc21
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d49deb4bbd857484a1b7e
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d49e3e2c235acd524bc24
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d49edb4bbd857484a1b81
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d49f4e2c235acd524bc27
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d49f9b4bbd857484a1b84
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d49fde2c235acd524bc2a
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a06e2c235acd524bc2d
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a12b4bbd857484a1b87
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a18e2c235acd524bc30
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a1db4bbd857484a1b8a
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a22e2c235acd524bc33
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a28e2c235acd524bc3b
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a29b4bbd857484a1b99
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a32e2c235acd524bc3e
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a38e2c235acd524bc41
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a3ee2c235acd524bc44
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a49e2c235acd524bc48
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a51e2c235acd524bc4b
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a57b4bbd857484a4009
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a5db4bbd857484a400c
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a64e2c235acd524bc4e
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a6ab4bbd857484a400f
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a71b4bbd857484a4012
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a77e2c235acd524bc51
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a7fb4bbd857484a4015
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a89e2c235acd524bc54
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a8ee2c235acd524bc57
https://xn--e1aajycefifb.xn--p1ai/blogs_post?id=662d4a98e2c235acd524bc5a
https://xn--e1aajycefifb.xn--p1ai/experts
https://xn--e1aajycefifb.xn--p1ai/ads_board
https://xn--e1aajycefifb.xn--p1ai/blogs